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Coupled quantum wires: Explaining the observed localized states at the crossing of metallic
and semiconducting nanotubes
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We study a set of crossed one-dimensional (1D) systems, which are coupled with each other via tunneling at
the crossings. We begin with the simplest case with no electron-electron interactions and find that besides the
expected level splitting, bound states can emerge. Next, we include an external potential and electron-electron
interactions, which are treated within the Hartree approximation. Then, we write down a formal general
solution to the problem, giving additional details for the case of a symmetric external potential. Concentrating
on the case of a single crossing, we were able to explain recent experiments on crossed metallic and semicon-
ducting nanotubes [J. W. Janssen et al., Phys. Rev. B 65, 115423 (2002)], which showed the presence of

localized states in the region of crossing.
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I. INTRODUCTION

Physics in one-dimensional (1D) systems manifests a
number of peculiar phenomena, such as spin-charge separa-
tion, conductance quantization,1 and anomalous low-
temperature behavior in the presence of backscattering
impurity.? It is reasonable to expect that the more complex
structures composed of crossed 1D systems, such as cross-
ings and arrays,’ should exhibit some particular features as
well. Although the transport properties of crossed 1D sys-
tems and their arrays have been thoroughly studied both
theoretically*® and experimentally,” the electronic struc-
ture of these systems is much less understood and the inter-
pretation of existing experimental results is challenging.

Single wall carbon nanotubes (SWCNTs) are quasi-1D
systems, with a quantized transverse component of the mo-
mentum. Using the single-particle excitation energy disper-
sion for graphite, it is possible to establish a connection be-
tween chirality and transport properties of the SWCNTSs,
which can be metallic or semiconducting. As it was shown in
Ref. 10, the dependence of the conductance of a rope of
CNTs (dominated by metallic CNTs) on the gate voltage and
temperature is, in a wide region of parameters, in excellent
agreement with Luttinger liquid theory, which describes the
collective massless fermion motion. On the other hand, the
Schrodinger equation, describing a single quantum massive
quasiparticle with m;=0.037m, in a harmonic potential, was
successfully applied to explain the energy-level spacing in a
semiconducting SWCNT of finite length.!! At present, there
exists a number of publications devoted to the study of
crossed 1D quantum wires coupled via tunneling at the
crossings, for example, by Mukhopadhyay et al.>'? and Kuz-
menko et al.%'31* Their treatments are based on the Luttinger
liquid approach, which is applicable for the description of
massless modes in metallic NTs. Our study is concerned
mainly with massive modes present in both semiconducting
and metallic SWCNTs. Therefore, we find it more appropri-
ate to use the Schrodinger equation than the Luttinger liquid
model.

Recent scanning tunneling microscopy (STM) experi-
ments on a metallic carbon nanotube crossed with a semi-
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conducting one'> have shown the existence of localized
states at the crossing which are not due to disorder. However,
these localized states do not appear systematically in all ex-
periments; i.e., the effect is highly dependent on the nature of
the carbon nanotubes (metallic or semiconducting), of the
barrier formed at the crossing, etc. Aiming at clarifying this
problem, we present in this paper a detailed study of tunnel-
ing effects between crossed 1D systems in the presence of
potential barriers for massive quasiparticle excitations. Be-
cause effects of electron-electron interactions can be reason-
ably incorporated in a random-phase approximation
(RPA),'*!7 we study a simpler model, accounting for
electron-electron interactions only within Hartree approxi-
mation.

The outline of this paper is the following: In Sec. II we
introduce the model that we are going to use to describe the
array of crossed nanowires. In Sec. III we consider a particu-
lar case of free electrons and write down explicit solutions
for the case of one crossing and a regular lattice of crossed
wires. Section IV contains a formal general solution, with
additional details given for the case of a symmetric external
potential. We demonstrate the effect of tunneling on the elec-
tronic structure of single crossings in Sec. V and qualita-
tively discuss different possibilities depending on the exter-
nal potential. Section VI contains quantitative analysis and
comparison with available experimental data of the elec-
tronic structure of a single crossing for different values of
parameters. Our conclusions and open questions are pre-
sented in Sec. VIIL.

II. MODEL

We consider a system composed of two layers of crossed
quantum wires with interlayer coupling. The upper layer has
a set of parallel horizontal wires described by fermionic
fields 1,//j(x), whereas the lower layer contains only vertical
parallel wires described by the fields ¢,(y). The wires cross
at the points (x;,y;), with i,j € Z and the distance between
layers is d, with min(|x;—x;,|.|y;—y;.1])>d (see Fig. 1).

The partition function of the system reads
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FIG. 1. Two-dimensional (2D) array of crossed wires.
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with the total action given by
§=80+ Ssee + Sine- (2)
The first term accounts for the kinetic energy and external
potential Vf’“(x), which can be different in each wire and

may arise, e.g., due to a lattice deformation, when one wire
is built on top of another,

ne
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Here, u, , denotes the chemical potential in the upper (u,) or
lower (u,) layer.

The second term of Eq. (2) describes scattering at the
crossings (x;,y;),

hB
Se= 2 J dtH;;, (5)
ij Y0

where

* * ) 1 i
Hij:[wj(xi"r) (Pl(yj’T)]<r ~ )|: j( ) .
ij Ui/ LPVY)jT
Notice that the matrix element U;; describing intralayer con-

tact scattering can, in principle, be different from U,j, but
both must be real. On the other hand, the contact tunneling
(interlayer) coefficient between the two crossed wires T};
(Fig. 2) can be a complex number, since the only constraint
is that the matrix above must be Hermitian.

The third term in Eq. (2) accounts for electron-electron

interactions,
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FIG. 2. Two crossed wires.
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III. FREE ELECTRONS CASE

We start by considering a very simplified case, namely,
free electrons [no electron-electron interaction, V*¢(x)=0
and no external potential, V‘?’“(x)=0]. Moreover, we assume
U ;i=U;;=0 and put u,=p,=u. The interlayer tunneling is
assumed to be equal at each crossing point 7;;=T and to have
a real and positive value. In such a case, the partition func-
tion consists of only Gaussian integrals. We can then inte-
grate out the quantum fluctuations, which reduces the prob-
lem to just solving the equations of motion. Considering a
real time evolution and performing a Fourier transformation
in the time variable, we are left with the following equations
of motion for the fields:

n 4

(— o aE E) Pi(x) + TEZ Sx—x) ;) =0,
h? d?

<_ Py E) oi(x) + >, 8y - yWilx)=0, (7)
mdy I

where m denotes the electron mass and E is the energy of an
electron state. First, we evaluate the solutions for the case of
free electrons without tunneling and then we investigate how
the addition of tunneling changes the results. The solution for
the free electron case consists of symmetric and antisymmet-
ric normalized modes,

1 1
lwbs(x) = V/_Zcos(kyx), (/Ia(-x ZSln(k -x) (8)

respectively. The corresponding momenta k, and k, depend
on the boundary conditions: with open boundary conditions
ky=m(2n+1)/2L, k,=mn/L and with periodic boundary con-
ditions k;=k,=mn/L for a wire of length 2L and n integer.
To find the solution for the case with tunneling 7#0, we
have to solve Eq. (7). These equations are linear, therefore,
the solution consists of homogeneous and inhomogeneous
parts,
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which are
wyom(x) = Ajeikx + Bje_ikx, (10)
Yrh(x) = ﬁzkE @i(y;)sin(k[x - x/). (11)

Imposing open boundary conditions, ¢;(+L)=0, we find

Aje™t+ BT+ Y™ (L) =0,

Aje k1 Bt 4 %ﬂh(_ L)=0. (12)

Writing the above equations in a matrix notation and invert-
ing yields

(Aj> ) ~1 ( eikL _e—ikL>( lp.iinh(L) )
B;)  2isin(2kL)\- e oM J\ g1 )"

Substituting explicitly the expression for l@nh(iL) given by
Eq. (11) and using the mathematical identity

(o _ikx)( ekl _ g7kl ) (sin(kL - kx;) )
e e — e kL sin(kL + kx;)
= cos(2kL)cos(kx — kx;) — cos(kx + kx;),

leads, after simplifications, to the solution

Pi(x) =— TE Gx.x)ely;),

@(y) = =T GOy, y)(x), (13)
1

where, for open boundary conditions,

Go(xisxjvE)

[cos(kx; + kx;) — cos(2kL — k|x; — x,|)],

L
%k sin(2kL)

(14)

and the energy E is related to k as E=#%k?/2m. Similar cal-

culations can be performed for the case of periodic boundary
conditions, yielding Eq. (13) with

G(xpx,,E) = cos(kL —k|x;—x}|).  (15)

m
1%k sin(kL)
A. Two crossed wires

In particular, for the simplest case of a single horizontal
and a single vertical wire, with just one crossing at (x;, ),
the solution is

Px) = = TG(x,x0,E) @(yy),

@(y) ==TG(y,yo.E) xo). (16)

By substituting (x,y)=(xy,y,), we find that at the crossing
point
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xg) == TG(x0,x0,E) @(yo),

= TG(y0,y0.E) P x0). (17)

The consistency condition requires that

e(yo) =

1 TG(xg,x0,E
CoB) | _ )
TG(yo,)’o,E) 1
or
T2G(x0,%0,E)G(y9,0,E) = 1. (19)

The solution is even simpler if (xg,y,)=(0,0). Then, for
open boundary conditions, the symmetric modes are

B ©(0)Tm
W) = %%k cos(kL) s
) = P(O)Tm .

Pr= %%k cos(kL)

and the antisymmetric modes are left unchanged in compari-
son with Eq. (8). Also,

G(0,0,E) = mt%m (20)

and the secular Eq. (19) becomes

[ Tm tan(kL) ]2 4

12k @D

which splits into two transcendental equations

T
kt=— ﬁ—rf tan(k*L),

Tm
k= 9 tan(k"L).
The first one describes the shifted values of scattering states
energies, whereas the second equation has an additional
bound-state solution with E<O, if 7> T,=%>/mL. The ap-
pearance of the bound state is exclusively due to the presence
of tunneling. For an electron in a wire of length 2L
=10®> nm the corresponding value is T,=7.62
% 107> eV nm and for quasiparticles the value of Ty, is typi-
cally larger, inversely proportional to their effective mass.
Defining then k=-ik™ and taking the thermodynamic limit
L—, we find |k|=Tm/%* with the corresponding bound-
State energy
*m

E= YRR (22)

and the wave function given by

\/|K| —\le

Yx )—— (23)

The factor 1/2 instead of 1/ \5'2 comes from the fact that now
an electron can tunnel into the other wire, where its wave
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function ¢(0)=-(0). Equations (22) and (23) hold for both
open and periodic boundary conditions. Since the threshold
value T is quite small, the bound state should exist for a
typical crossing with relatively good contact. However, the
energy of the state is extremely small, E~107% eV if T
~Ty. Qualitatively similar results were found by numerical
computation'®!® of the ground-state energy of an electron
trapped at the intersection of a cross formed by two quantum
wires of finite width.

B. Regular lattice of crossed wires

Consider now a regular square lattice, with lattice con-
stant a. Then, one has x;=al and y;=aj. Considering bound
states E<0, Eq. (13) can be significantly simplified in the
thermodynamic limit L — oc. Then, with k=ik, for both open
and periodic boundary conditions,

et (24)

G(Xi,Xj,E) =

m
72| ]
From symmetry arguments, the wave functions should be
Pi(x)=hp(x)e™% and @(y)=o(y)e’®x'. After substituting
them into Eq. (13) and Eq. (24) we find
me'® @ | sinh(kx — kal,)e™x
h’k
sinh[ kx — k(L. + 1)a]

cosh(ka) — cos(K,a)

¥i(x) == Teo(y;)

cosh(ka) — cos(K,a)

iK la lK a
me"* | sinh(kx — kal,)e
ely) =~ T‘ﬂo(xz) {

cosh(ka) — cos(Ka)
~ sinh[ ky — K(l\, + 1)a]}

cosh(ka) — cos(K,a)

where I, [,eZ, such that al,=x<a(l,+1) and al,<y
<a(l,+1). Therefore ii(x) = ¢0(0)e'<Kxal+K ) and e,(yj)
—@O(O)e’(KX““K @) with (0) and ¢,(0) related by

m sinh(ka)
%o(0) = Kcosh(Ka) —cos(K,a) ¢0(0),
o) = TS (0

ﬁZK cosh(ka) — cos(K,a)
Thus, the spectral equation reads

(mT)? sinh?(ka)
(h%k)? [cosh(ka) — cos(K a)]|[cosh(ka) — cos(K,a)]

1=

By performing an analytic continuation k=ik in Eq. (25), we
find an equation similar to the one obtained previously by
Kazymyrenko and Doucot?® when studying scattering states
in a lattice. The spectral equation describes a band formed by
bound states with energies —7/a<E<0. The momenta K,
and K, run in the interval —7<K.a,Ka<wm if T=T;
—th/ma or inside the region |s1n(K al/2)sin(K, a/2)|
=T/T; if T<T; Similar results were calculated A
estimated,”? and measured? in the context of hybridization
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between vertical and horizontal stripe modes in high-T,. su-
perconductors.

IV. MORE GENERAL CASE

Now we consider a more general model, which takes into
account the presence of an inhomogeneous potential V‘;Xt(x)
arising from possible lattice deformations, and includes
electron-electron interactions V°~¢(x), which will be treated
at a mean-field level, within the Hartree approximation

H_Je(x) Each crossing (x;,y;) is considered as a scattering
point with tunneling 7}; and scattering potential U;;. The cor-
responding equations of motion then read

D hi(x) + > LU,(x) + Tj0,(y)]18x = x;) = 0,
]

D, @i(x) + 2 [Uaeiy) + Thap(x) 18y — y) =0,
]

where
ﬁZ
D, =- . d2+V(x) E,
)
Dj,=- . d2+V(y) E,

with Vj(x):Vth(x)+V;;-e(x). This model is solved most eas-
ily through the Green’s function satisfying

Dj, Gj(x),x5,E) = 8(x) — x;)
with
Gj(x1,%0,E) = G (xp,x1,E),
and the corresponding open boundary conditions,
Gi(x,L,E)=0, G,x,~L,E)=0,
or the periodic ones

Gj(.xl,L,E) = Gj(.Xl,_ L7E)9

G(x;,L,E) = G} (x1,~ L,E),

where the prime denotes the derivative with respect to x;.
Note that we consider a real time Green’s function for a
particular wire (not the whole system), which differs by a
factor A from the commonly used definition. The solution to
the model is

lﬂj(x) == 2 [Uzjlﬂj(xz) + le(Pl(yj)]Gj(x7xl’E)a
I

eiy) =- E [Uﬂ‘Pi()’l) + T?}I//l(xi)]Gi(ysyl’E)’ (26)
I

which we require to be normalized,

> (f |1,D,(x)|2dx+f |<P1(}’)|2d}’) =1. (27)
1

The self-consistency condition for the value of the functions
at crossing points (x;,y;) yields the equations
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FIG. 3. G(0,0,E) in units of m/#? versus E in units of
h2/2mL>.

> LU;G (x,x1, E) + 8] (x) + TG (x5, E) @i(y;) =0,
!

> {[ﬁile(Yj’th) + 8lei(y) + T;G (v, y E) ¢(x;)} = 0.
1

(28)

To find nontrivial solutions for the fields ¢;(x) and ¢;(y), the
system of homogeneous equations in Eq. (28) has to be lin-
early dependent and hence the solution is represented by the
null space of the system. This means that after writing the
equations in a matrix form, the determinant of the matrix
should be zero, thus leading to a spectral equation for E.
Moreover, bound-state solutions in the thermodynamic limit
L — satisfy both open and periodic boundary conditions,
since Y{*L)—0 and ¢'(=L)—0.

To understand better the dependence of the Green’s func-
tion G,(x;,x;,E) on E, we represent the function through the
solutions of the homogenous equations,

D f;(x) = 0. (29)

‘We omit the index j in what follows for simplicity. The most
general and common representation, which holds for any
static potential, reads as follows:

‘ﬂz”(x ) %”(xz)

p— (30)

G(-xlv-x29E) = 2

Here, the function ¢,.(x) is the solution of the homogenous
equation

( h? d )
-——+ V) —-¢ x)=0, 31
TS V) = ) G1)
and the spectrum {g,} is obtained by imposing the corre-
sponding boundary conditions. Notice that in the present rep-
resentation of G(x;,x,,E) the functions ¢, (x) have to be
orthonormal. By writing G(x,x,,E) in the form given in Eq.
(30), the following identity arises:

JdG(xy,x0, E
f 0 Gy E)GG iy ) = 2O E) )
JE
The case x;=x,=0 for free electrons is illustrated in Fig. 3,
where Eq. (20) is plotted. If some external potential is
present, G(x,,x,,E) has the same form but the positions of
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the poles are shifted and the corresponding values are differ-
ent. If no regularization is used, the calculations for E>0
must be performed in the finite-size limit, otherwise with L
— the energy distance between different modes vanishes
and the poles situated on the real positive half axis merge to
form a branch cut singularity. This behavior can be readily
seen on the example of Eq. (20), in which we can perform an
analytic continuation, considering k— k+ik’. Then, in the
limit L—oo, tan(kL+ik'L)=isgn(k’), and the function
G(xy,xy) changes sign as one goes from the upper to the
lower complex half plane for k # 0.
Now we represent the Green’s function through the solu-
tions of the homogenous equation
h? d*
(— EE-'_ V(x)—E)tp(x):O. (33)
This is a second-order differential equation, therefore, it
should have two linearly independent solutions, which we
call ,(x) and ¢,(x). Then the Green’s function is

=

G(xl,xz,E)={A_l//](xl)+3_¢2(xl)’ X=X (34)
A (x) + Bo(x1), x> xg,

where the expressions for the coefficients A_,B_,A,,B.,
(functions of x,) are derived in Appendix A. In particular, for
a symmetric potential V(x), we can choose a symmetric i(x)
and an antisymmetric #,(x) solution as linearly independent,
i.e., ¥ (x)=i,(x) and ¢,(x)=4),(x). Thus we find

_mmw[mm_%wq
R IO KA AT 9
and

G(0,0,E) = my(0) gulL) (36)

12,0) (L)

To obtain the results in the thermodynamic limit L — o, it is
useful to rewrite G(x;,x,) using quantities which do not de-
pend on L explicitly. For example,

x
G(x,0,E) = G(0,0,5) L) _ %—'p",q D
#,(0) A7 4,(0)
After substitution of Eq. (8) into Eq. (34) and simplification,
for the case of noninteracting electrons we find

G(xy,x5,E)

(37)

" [cos(kx + kx,) - cos(2KL - Kz, ~ )]
= ——————[cos(kx; + kx,) — cos —klx; —x5))],
#2k sin(2kL) e b
which is the same expression as in the previous section [see
Eq. (14)]. This is a posteriori justification of the use of the
same letter G(x,,x,,E) in the first section. The case of a
harmonic potential is considered in Appendix B.

V. SINGLE CROSSING

Now we apply our results including tunneling and exter-
nal potential to the simpler case of only two crossed wires,
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aiming to compare our findings with experiments. Using the
general solution given by Eq. (26), and considering T=T",
we can write

Px) == [Uh(xo) + Te(yo)1G(x,x0,E),

@(y) == [Up(yo) + Tih(x))1G1(y, v, E).

By substituting (x,y)=(xy,y,), we find that at the crossing
point,

[1+ UG (x9,x0,E) 1(x0) + TG, (x0,x0,E) (y) =0,

[1+ UG(y0.y0-E) (o) + TG(y0.y0. ) xg) = 0.
The consistency condition requires that
1 + UG, (xp,x0,E)
TG,(y0,y0.E)

TGI()C(),)C(),E)

~ =0, (38)
1+ UG5(y9.y0.E)

or

0=[1+ UG (x0.x0, E)I[1 + UG,(0,y0, E)]
- T*G(x0,%0,E) G5 (39, Y0, E) -

The meaning of this equation becomes clearer in the sym-

metric case, when U=U and G,(xo,x,E)=G,(yy,v0,E)=G.
In this case, it reduces to a quadratic equation, which bears
two solutions,

-1 -1

G,=—— G.=——.
U+T U-T

Notice that they differ by the sign in front of the tunneling
amplitude 7', which is shifting the potential U. Such symme-
try effectively reduces the problem to 1D with effective po-
tential U,¢6(x,). Hence, we have

‘r//(xo) = ‘P(yo), U:ff: U+T,
#xg) =— @(yg), Ugy=U-T. (39)

The shift of the energy levels in a wire due to the presence of
the o potential can be visualized with the help of the Green’s
function expansion, where one has

|¢s(x0)|2 -1
G(xpxpE) =2, ————=—. 40
(x0.0. E) E o TE U (40)

In the case with U =0, the energies are exactly those of the
poles and, therefore, remain unshifted. However, since
G(xg,x9,E)==1/U., the curve actually describes how the
energies of the modes change as we keep increasing —1/U
from —o if U4>0 or decreasing —1/Ugg from +o0 if Uy
<0. In the latter case, we can run into the region with E
<0, which would correspond to the appearance of a bound
state. Nevertheless, to obtain an exact solution, it is more
convenient to work with the expression for G(xy,xy,E) in
terms of the wave functions,
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FIG. 4. Voltage versus length diagram, which shows the experi-
mentally observed density of states. Notice the existence of two
localized states in black. (Extracted from Ref. 15.)

G(0,0,E) = 5+~ = — (41)

where we assumed x,=0 for simplicity.

VI. COMPARISON WITH EXPERIMENTS

Now, we will compare our theoretical findings with ex-
perimental results. We concentrate mostly on the analysis of
a system consisting of two crossed SWCNTs: a metallic on
top of a semiconducting (MS) one.'> In its unperturbed state,
the band structure of a SWCNT can be understood by con-
sidering the electronic structure of graphene. Due to its cy-
lindrical shape, the transverse momentum of one particle ex-
citation in a SWCNT has to be quantized, whereas the
longitudinal momentum may vary continuously. Combining
this condition with the assumption that the electronic struc-
ture is not very different from that of graphene, one finds two
different situations, depending on the topology of the
SWCNT: There are no gapless modes and the nanotube is
semiconducting, or two gapless modes are present and the
nanotube is called metallic. Analyzing the spectroscopic
measurements performed along the metallic nanotube (see
Fig. 4) and comparing with the unperturbed electronic struc-
ture, one notices two main changes. First, a small quasigap
opens around the Fermi energy level e between e
—0.2 eV and &;+0.3 eV in the spectrum of the massless
modes (corresponding to zero transverse momentum). Sec-
ond, two peaks are visible at gy=er—0.3 eV and &,=¢
—0.6 eV in the region around the crossing, corresponding to
localized states between the Fermi energy and the Van Hove
singularity at eyg=er—0.8 eV. Such states are not visible
above the Fermi energy, thus suggesting that the electron-
hole symmetry is broken by the presence of some external
potential. The latter may appear due to lattice distortions and
the formation of a Schottky barrier at the contact between the
nanotubes.?*?> In the following, we show that if the potential
is strong enough, localized states can form in the spectrum of
the massive mode corresponding to the Van Hove singularity
with energy e=eyy—E. Therefore, the observed localized
states should have E;=-0.5 eV and E;=-0.2 eV.

To incorporate in a more complete way the effects of the
Schottky barrier and lattice deformation, we assume Ve*'(x)
to have a Lorentzian shape,
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FIG. 5. ¢(x) (nm~"2) versus x (nm).

1%

Ver(x) = — ———
W= 2

(42)

First, we study the influence of this potential alone on the
electronic structure; i.e., we assume that there is no tunneling
T=0, and no electron-electron interactions. Exact numerical
solution of the Schrodinger equation shows that an approxi-
mation of the potential in Eq. (42) by the harmonic one does
not change the solution qualitatively. Therefore, we consider

Vext(x) =~ —V(1-x2/b%), which describes a harmonic oscilla-
tor with frequency w= 2V/mb? and corresponding spectra
E,==V+(n+1/2)\242V/mb? for E, < 0. Moreover, it is rea-

sonable to assume that the strength of the barrier V is of the
same order as the energy of the bound states and that the
potential is localized on the same length scale as the local-

ized states. Hence, we take V=0.7 eV and b=4 nm. It fol-
lows then from our calculations that the difference between
neighboring energy levels is quite small and there are many
bound states present in the case when m is the actual electron
mass. However, assuming m to be an effective electron mass,
with m=0.025m,, which is of the same order as the experi-
mentally estimated values m=0.037m, (Ref. 11) and m
=0.06m,,° we find exactly two pronounced bound states:
The first one has E=-0.5 eV and is described by the sym-
metric wave function ¢(x) as shown in Fig. 5, whereas the
other has E=—-0.2 eV and is described by the antisymmetric
wave function i,(x) (see Fig. 6). Considering Fig. 5, we
observe that the localization size of the state is around 10
nm, which agrees well with the experimental data. On the
other hand, the state shown in Fig. 6 has a zero value exactly
at the crossing and is rather spread, a behavior which is not

VY, (x)

-20 =10 10 20

FIG. 6. i,(x) (hnm~"2) versus x (nm).
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Y5 (x)

-20 -10 10 20

FIG. 7. ,(x) (nm~'2) versus x (nm).

observed experimentally. Besides these two, a number of
other states are also present in the vicinity of the Van Hove
singularity.

Second, we take into account electron-electron interac-
tions to consider other possibilities to obtain two pronounced
bound states. Unfortunately, our approach only allows us to
incorporate electron-electron interactions at the mean-field
level by using the Hartree self-consistent approximation

Vz_e(x)=Jdx’Ve_e(x—x’)n(x'), (43)

where n(x) is the electron density, given by

n(x) = 2 [0 Prple, — w). (44)
k

Here the summation k goes over energy levels and np(e) is
the Fermi distribution. Although it is known that in 1D sys-
tems quantum fluctuations play an extremely important role,
we nevertheless start with the mean-field approximation as a
first step to incorporate them in RPA. Moreover, we believe
that their presence does not qualitatively change the obtained
results. To render the numerical calculation simpler, we con-
sider a delta-like interaction potential, which leads to

Vi “(x) = Von(x). (45)

By estimating the effective interaction strength Vi~ 2whug
from the Luttinger liquid theory, we obtain that V,
~3.4 eVnm for vp=82X10" cm/s.”’” Suppose that the
lowest energy state with E=—0.5 eV is occupied by an elec-
tron with a certain spin. Then, there is a possibility to add to
the same state an electron with an opposite spin. However,
due to the repulsive Coulomb interaction the energy of the
two-electron  state becomes E=-0.2 eV for V,
=3.15 eV nm. The corresponding self-consistent solution is
presented in Fig. 7. The state has the same shape as in Fig. 5,
but is a bit more spread. By comparing the density of states
(DOS) distribution with scanning tunneling spectroscopy
(STS) data for the crossing,'®> we observe that the inclusion
of electron-electron interactions (Fig. 7) provides a much
better agreement between theory and experiment for the E
=-0.2 eV bound state than in the previous case (Fig. 6).
Third, we take into account tunneling between the wires.
Qualitatively, this leads to the splitting of energy levels and
redistribution of charge density in the wires, thus effectively
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V_(x)

30 -10 10 20 X

FIG. 8. ¢_(x) (nm~"2) versus x (nm).

reducing the strength of electron-electron interactions. Since
we have no information about the electronic structure of the
semiconducting nanotube, to make a quantitative estimation
we assume that the effective mass is equal in both wires and
that the potential is also the same. In such a case, from sym-
metry arguments the electron density should be evenly dis-
tributed in both wires even for a very weak tunneling. There-
fore, the electron-electron interactions should be twice
stronger than in the case without tunneling, namely, V,
=6.3 eV nm to achieve the same energy value. Moreover, if
the tunneling coefficient is large enough, the splitting of the
energy levels becomes significant and detectable. We can
estimate the coefficient 7, if we assume that it has the same
order for SM, metallic-metallic (MM), and semiconducting-
semiconducting (SS) nanotube junctions. The SS and MM
junctions have Ohmic voltage-current dependence, character-
ized by the conductance G. Moreover, we can estimate the
transmission coefficient of the junction as G/G,
~(T/2whvg)?, for ballistic transport with G/Gy<1. For
MM junctions experimental measurements®! typically yield
G/Gy~ 1072, thus corresponding to 7~ 0.34 eV nm. For ex-

ample, for 7=0.28 eV nm and V=0.44 eV in Eq. (42),
without electron-electron interactions we find that the system
has two bound states. The lowest energy bound state with
E=-0.5 eV is shown in Fig. 8. Compared with Fig. 5, the
state has a peak exactly at the crossing, corresponding to a
local increase in the DOS. The other bound state with E
=—-0.2 eV is shown in Fig. 9. Contrary to the previous case,
the state has a valley at the crossing, corresponding to a local
decrease in the DOS. However, this local change in DOS is
too small to be observable in the present experimental data.

W, (x)

20 -1o0 10 20 X

FIG. 9. i, (x) (nm™"2) versus x (nm).
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y_(x)
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FIG. 10. ¢_(x) (nm~"?) versus x (nm).

If we now include electron-electron interactions with V,
=3.15 eV nm and add a second electron with different spin
to the system, we find that the new state has E=-0.267 eV
and acquires the shape shown in Fig. 10.

The last result suggests that there are yet other possible
interpretations of the experimental results. First, if the poten-
tial in the metallic SWCNT is significantly decreased due to
screening effects but a Schottky barrier in the semiconduct-
ing SWCNT can reach considerable values, sufficient for the
formation of the bound states, then the latter are also going
to be present in the metallic SWCNT due to tunneling be-
tween SWCNTs. Second, there is still a possibility to find a
bound state existing purely due to tunneling, i.e., without
external potential, as was shown in Eq. (23), and a second
bound state may arise with different energy due to Coulomb
repulsion between electrons with different spins. However,
this is most probably not the case we have in the experi-
ments, because due to electron-hole symmetry such states
would exist also above the Fermi energy, a result which is
not observed experimentally.

VII. CONCLUSIONS

We presented several possibilities to explain the observed
localized states at the crossing of metallic and semiconduct-
ing nanotubes.'> All of them require the existence of an ex-
ternal potential in the metallic and/or semiconducting
SWCNT to break the electron-hole symmetry, since the lo-
calized states were seen only below the Fermi energy. Most
probably, such a potential comes from a Schottky barrier and
the effect of lattice distortions is minimal, since such local-
ized states were, up to now, observed only for MS crossings
and not for MM or SS ones. Moreover, the effective mass of
quasiparticle excitations should be of order m=0.025m,,
where m, is the actual electron mass, to generate only a few
bound states localized on a region of approximately 10 nm
with energy of order of 0.5 eV. The best agreement with the
experimental data is obtained by assuming that the second
bound state has a different energy due to the Coulomb repul-
sion between electrons with different spins. The role of tun-
neling in the observed electronic structure is not clear and
allows for many interpretations. To avoid such ambiguity, the
electronic structure of the semiconducting nanotube should
be measured as well. Moreover, to be sure that the available
STS measurements indeed represent the electronic structure
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of the nanotube and are free of artifacts introduced by the
STM tip?® several measurements with different tip height
should be performed.
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APPENDIX A

Here we consider the Green’s function as a function of
one variable x; and fix x, for a moment. Since G(x;,x,,E) is
the Green’s function, we require it to satisfy proper boundary
conditions G(*L,x,,E)=0, be continuous G(x,—0,x,,E)
=G(X2+0,X2,E), and also G’(XZ—O,)Cz,E)—G,(XZ+O,X2,E)
=2m/#%?. Substituting Eq. (34) into the above requirements
one finds

A, 0
A_ 2m| 0
P B, =22 o |’ (A1)
B_ 1
where
(L) 0 (L) 0
| 0 wen 0 wen
() =) ) - ih(x)
- 'M (x2) 1/’; (x) - '/fé(xz) l/fé(xz)
(A2)
Multiplying Eq. (A1) by the matrix P~! we find
Ay I (D)[n(= L) (x2) = (= L) ihy(xy) ]
A_ s (= D[ (L) ¢ (x2) = ¢y (L) ihy(x5)]
B, = P (D[(= L) (x2) = ¢ (= L) s (x,) ]
B_ = (= D[(L) 1 (x2) = ¢ (L) (x,)]
where

2
€= 2y LAWY= 1) = (= LT

The Wronskian

PHYSICAL REVIEW B 78, 115123 (2008)

W, = i (x2) 5 (x2) = (x2) 4 (x2)

is nonzero for linearly independent functions and its value
does not depend on the point x,.

APPENDIX B

Suppose that Eq. (33) has a solution (x) which is neither
symmetric nor antisymmetric. Thus, for symmetric potentials
(—x) is also a solution and both of them are linearly inde-
pendent. Furthermore, we can then compose a symmetric
P(x)=[p(x)+y(-x)]/2 and an antisymmetric o, (x)=[i(x)
—(—x)]/2 solution. In particular, for a harmonic potential
V(x)=mw?x?/2, one can find such a solution,

—max2/2% E 1 mw)
= H P . s
W) =e (ﬁw > Nn "

where H(v,x) is the Hermite polynomial for integer . It
follows then that

(B1)

—
Nar
wy(o) — 2E/hw—1/2 3 - (BZ)
G5
4 fow
and
, 2mwm 1
U0 = =2\ (BY)
rl=-—
(4 hw)
Moreover, in the thermodynamic limit L — o,
r(l £>
T 2k \/whr<§ £>'
4 fiw

Equation (B4) approaches asymptotically the expression for
free fermions, as w—0 for E<<0,

1 /-m
G(0,0,E) — g E

(B5)
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